dad3 <- c(16.35,19.08,17.48,19.20,18.85,19.62,17.15,18,16.20,19.2,19.07,19.6,17.75,20.05,19.9,19.33,19.58,17.85,18.68,21.22,17.73,19.17,18.82,19.5,22.75,19.48,19.03,15.3,23.78,20,19.45,22.25,23.25,19.97,19.37)
quartis <- quantile(dad3,
prob=c(0.25,0.5,0.75),
type=2)
quartis
## 25% 50% 75%
## 18.0 19.2 19.9
dis_quartis <- diff(range(quartis))
dis_quartis
## [1] 1.9
boxplot(dad3)
Existem 2 outliers inferiores e 4 outliers superiores. Para visualizarmos, fazemos:
outliers <- boxplot.stats(dad3)
outliers$out
## [1] 16.20 22.75 15.30 23.78 22.25 23.25