

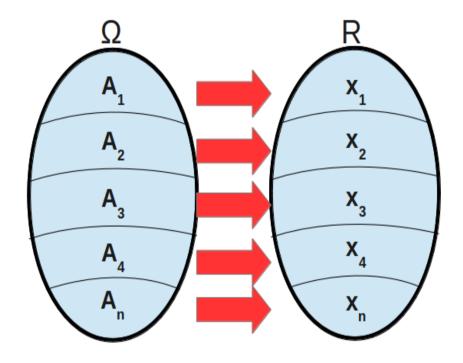
Variáveis aleatórias

Universidade Estadual de Santa Cruz

Ivan Bezerra Allaman

DEFINIÇÃO

É uma função que associa cada evento do espaço amostral a um número real.



Aplicação

1. Seja E um experimento que consiste em lançar duas moedas. Se Y é a variável aleatória de interesse que consiste no número de ocorrência de caras, quais são os possíveis valores desta variável aleatória?

Se o experimento consiste em lançar duas moedas, então podemos não ter nenhuma cara, uma cara ou duas caras. Vejamos na tabela abaixo os possíveis valores de **Y**.

Eventos	Υ
(coroa, coroa)	0
(coroa, cara); (cara, coroa)	1
(cara, cara)	2

2. Uma viga de concreto pode apresentar falha por cisalhamento (C) ou flexão (F). Suponha que três vigas com defeito sejam selecionadas aelatoriamente e o tipo de falha seja determinado para cada uma delas. Seja X o número de vigas entre as três selecionadas que falharam por cisalhamento. Relacione cada resultado no espaço amostral juntamente com o valor de X associado.

Eventos	х
(F,F,F)	0
(F,F,C);(F,C,F);(C,F,F)	1
(F,C,C);(C,F,C);(C,C,F)	2
(C,C,C)	3

VARIÁVEL ALEATÓRIA DISCRETA

Uma variável aleatória Y será discreta se o número de valores de Y (seu contradomínio), finito ou infinito, for numerável. Ou seja, entre quaisquer dois elementos vizinhos não há quantidades intermediárias.

Função de probabilidade

É uma função que a cada valor y_i associa sua probabilidade de ocorrência.

$$p(Y=y_i)=p(y_i)=p_i$$

- · A função $p(y_i)$ será uma função de probabilidade se satisfazer às seguintes condições:
 - $p(y_i) \geq 0$, para todo y_i
 - $-\sum_{i=1}^{n} p(y_i) = 1$

Distribuição de probabilidade

É a coleção de pares $[y_i, p(y_i)]$ que pode ser representada por meio de tabela, gráfico ou fórmula.

Aplicação

3. Uma urna tem 4 bolas brancas e 3 pretas. Retiram-se 3 bolas sem reposição. Seja X o número de bolas brancas, determinar a distribuição de probabilidade de X.

Se X é o número de bolas brancas, então neste experimento esta variável aleatória pode assumir os seguintes valores: 0,1,2 ou 3. Para elaboramos a distribuição de probabilidade, precisamos calcular a probabilidade para cada possível valor da variável aleatória.

Vamos determinar primeiro o espaço amostral, ou seja, quantas possibilidades temos de retirar 3 bolas sem reposição de um total de 7 bolas. Percebam que podemos utilizar a regra da combinatória. Logo, temos:

$$n(\Omega)=C_3^7=rac{7!}{3!(7-3)!}=35$$

Agora que já sabemos o espaço amostral, vamos calcular as probabilidades para cada valor de X.

Para X = 0 temos:

$$P(X=0) = P(ext{todas as bolas serem pretas}) = rac{C_3^3}{35} = rac{1}{35}$$

Para X = 1 temos:

$$P(X=1) = rac{C_1^4 \cdot C_2^3}{35} = rac{12}{35}$$

Para X=2 temos:

$$P(X=2) = rac{C_2^4 \cdot C_1^3}{35} = rac{18}{35}$$

Para X = 3 temos:

$$P(X=3)=rac{C_3^4}{35}=rac{4}{35}$$

Logo, a distribuição de probabilidade de X é:

X	P(X = x)
0	1/35
1	12/35
2	18/35
3	4/35

Função de distribuição

Seja Y uma VAD, defini-se função de distribuição ou função de distribuição acumulada da VAD Y, no ponto y, como sendo a probabilidade de que Y assuma um valor menor ou igual a y, isto é:

$$F(y) = p(Y \leq y) = \sum_{y_i \leq y} p(y_i)$$

Aplicação

 Escreva a função de distribuição da variável aleatória X da aplicação 3.

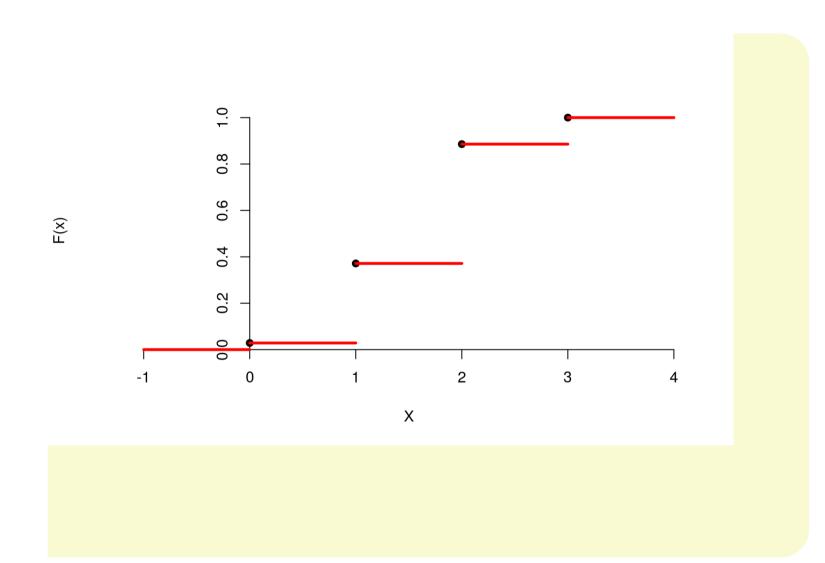
Para X<0, tem-se que F(x)=P(X<0)=0, pois já sabemos que a probabilidade é um valor entre 0 e 1.

Para
$$0 \leq X < 1$$
, tem-se que $F(x) = P(X \leq 0) = 1/35$. Para $1 \leq X < 2$, tem-se que $F(x) = P(X \leq 1) = 1/35 + 12/35 = 13/35$. Para $2 \leq X < 3$, tem-se que $F(x) = P(X \leq 2) = 13/35 + 18/35 = 31/35$. Para $X \geq 3$, tem-se que $F(x) = P(X < 3) = 31/35 + 4/35 = 1$.

Logo, tem-se:

$$F(x) = egin{cases} 0 & \sec X < 0 \ 1/35 & \sec 0 \leq X < 1 \ 13/35 & \sec 1 \leq X < 2 \ 31/35 & \sec 2 \leq X < 3 \ 1 & \sec X \geq 3 \end{cases}$$

Graficamente temos:



VARIÁVEL ALEATÓRIA CONTÍNUA

Uma variável aleatória Y será contínua se o seu contradomínio for um intervalo ou uma coleção de intervalos. Ou seja, entre quaisquer de dois elementos vizinhos há quantidades intermediárias infinitas, dependentes da sensibilidade do instrumento de medida.

Função densidade de probabilidade (fdp)

A função densidade de probabilidade ou simplesmente *fdp* é uma denominação utilizada apenas para VAC. Seja Y uma VAC, a função densidade de probabilidade f(y) é uma função que satisfaz as seguintes condições:

- $f(y) \ge 0$ para todo $y \in [a, b]$ com a < b
- $\int_{-\infty}^{+\infty} f(y)dy = 1$

· Uma vez que uma VAC pode assumir infinitos valores entre quaisquer de dois elementos vizinhos, a probabilidade de uma VAC é dada por:

-
$$P(a < Y < b) = \int_a^b f(y) dy$$

Aplicação

5. Seja Y uma VAC que representa a duração em anos de uma certa lâmpada especial cuja a densidade de probabilidade é dada por:

$$f(y) = egin{cases} 2e^{-2y}, & y \geq 0; \ 0, & ext{caso contrário} \end{cases}$$

Qual a probabilidade de uma lâmpada durar entre 1 a 2 anos?

Temos:

$$P(1 \leq Y < 2) = \int_{1}^{2} 2e^{-2y} dy$$

Logo,

$$P(1 \leq Y < 2) = 2 \int_1^{\,2} e^{-2y} dy$$

Aplicando as devidas técnicas de cálculo temos:

$$egin{aligned} P(1 \leq Y < 2) &= 2 \cdot rac{-1}{2}|_1^2 e^{-2y} \ &= -(e^{-2 \cdot 2} - e^{-2 \cdot 1}) \ &= 0,11702 \end{aligned}$$

Função de distribuição

Seja Y uma VAC, define-se função de distribuição de acordo com a seguinte expressão:

$$F(y) = p(Y \le y) = \int_{-\infty}^{y} f(x) dx$$

Aplicação

Encontre a função de distribuição da aplicação
 5.

Tem-se:

$$egin{align} F(x) &= \int_{-\infty}^x 2e^{-2y} dy = \int_0^x 2e^{-2y} dy \ &= 2 \cdot -rac{1}{2}|_0^x e^{-2y} \ &= -(e^{-2 \cdot x} - e^{-2 \cdot 0}) \ &= -e^{-2x} + 1 = 1 - e^{-2x} \ \end{pmatrix}$$

ESPERANÇA MATEMÁTICA

É o valor mais provável que se espera acontecer, ou seja, em média, é o que se espera que ocorra.

Veremos adiante que, a o conceito de esperança matemática generaliza aquilo que conhecemos por média, pois admite uma probabilidade distinta para cada valor da variável aleatória X.

Aplicação

7. Uma seguradora paga R\$ 30.000,00 em caso de acidente de carro e cobra uma taxa de R\$ 1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Vamos deduzir a expressão matemática de esperança por meio do problema sugerido. Supomos que a seguradora tenha fechado contrato com 100 carros. Destes 100, 97 deram lucro e 3 deram prejuízo, segundo dados do problema. Então o lucro da seguradora será a diferença da receita (taxa recebida do cliente) menos o custo (pagamento em caso de acidente). Logo,

 $Lucro = 97 \cdot 1000 - 3 \cdot 29000 = 10000,00$.

Para sabermos o lucro médio por carro, basta dividirmos o Lucro por 100. Então,

$$Lucrom$$
é $dio=rac{10000}{100}=100$.

Vamos agora chamar o lucro por carro de X e o lucro médio por carro de E(X). Então, reescrevendo o raciocínio anterior temos:

$$E(X) = \frac{97 \cdot 1000 - 3 \cdot 29000}{100}$$
$$= \frac{97}{100} \cdot 1000 - \frac{3}{100} \cdot 29000$$
$$= 0,97 \cdot 1000 - 0,03 \cdot 29000$$

Voltando a nossa definição de variável aleatória, fazendo $x_1=1000$ e $x_2=-29000$ com suas respectivas probabilidades de $p(x_1)=0,97$ e $p(x_2)=0,03$, chegamos na definição de esperança matemática.

$$E(X) = p(x_1) \cdot x_1 + p(x_2) \cdot x_2$$

Generalizando a expressão acima tem-se a seguinte definição:

Seja X uma variável aleatória discreta (VAD), a esperança matemática pode ser calculada como:

$$E(X) = \mu = \sum_{i=1}^n x_i p(x_i)$$

e para VAC como:

$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$$

• Seja k uma constante qualquer e Y e Z duas variáveis aleatórias quaisquer, então podemos definir as seguintes propriedades para esperança:

-
$$E(k) = k$$

-
$$E(Y \pm k) = E(Y) \pm k$$

-
$$E(Y \cdot k) = k \cdot E(Y)$$

-
$$E(Y \pm Z) = E(Y) \pm E(Z)$$

A variância de uma variável aleatória Y é definida como:

$$\sigma^2 = VAR(Y) = E[Y - E(Y)]^2 = E(Y - \mu)^2$$

OU

$$VAR(Y) = E(Y^2) - E(Y)^2$$

O desvio padrão é definido como sendo a raiz quadrada da variância, ou seja,

$$\sigma(Y) = \sqrt{VAR(Y)}$$

- · As propriedades da variância são:
 - VAR(k) = 0
 - $VAR(Y \pm k) = VAR(Y)$
 - $VAR(Yk) = k^2 \cdot VAR(Y)$
 - $VAR(Y \pm Z) = VAR(Y) \pm VAR(Z)$ Se Y e Z forem independentes

8. Seja X a quantidade de tempo que um livro retirado em um sistema de "empréstimo de duas horas" leva para ser devolvido, e suponha que a função de distribuição (f.d.) seja

$$F(x) = egin{cases} 0, & x < 0 \ rac{x^2}{4}, & 0 \leq x < 2 \ 1, & x \geq 2 \end{cases}$$

Use a f.d. para obter o seguinte:

a.
$$P(X \le 1)$$

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= $0 + \frac{1^2}{4} = \frac{1}{4}$

b. $P(0, 5 \le X \le 1)$

Neste caso vamos lanças mão das técnicas de cáculo. Então,

$$P(0, 5 \le X \le 1) = F(1) - F(0, 5)$$

$$= \frac{1^2}{4} - \frac{0, 5^2}{4}$$

$$= 0, 1875$$

c. P(X > 1,5)

$$P(X > 1,5) = 1 - P(X \le 1,5)$$

$$= 1 - \frac{1,5^2}{4}$$

$$= 1 - 0,5625 = 0,4375$$

d. F'(x) para obter a função de densidade f(x)

$$F'(x)=f(x)=rac{dx^2/4}{dx}=rac{x}{2}$$

e. E(X)

$$E(x) = \int_0^2 x f(x) dx$$
 $= \int_0^2 x \frac{x}{2} dx$
 $= \frac{1}{2} \cdot \left(\frac{2^3}{3} - \frac{0^3}{3}\right)$
 $= \frac{4}{3}$

d. VAR(X) e σ_X

Vamos calcular primeiro $E(X^2)$.

$$E(X^2) = \int_0^2 x^2 f(x) dx = \int_0^2 x^2 \frac{x}{2} dx$$
 $= \frac{1}{2} \cdot \left(\frac{2^4}{4} - \frac{0^4}{4} \right) = 2$

Logo,

$$egin{align} VAR(X) &= E(X^2) - [E(X)]^2 \ &= 2 - \left(rac{4}{3}
ight)^2 = 0,222 \ &\sigma_X &= \sqrt{0,222} = 0,471 \ \end{cases}$$

